Bone marrow progenitor cells induce endothelial adherens junction integrity by sphingosine-1-phosphate-mediated Rac1 and Cdc42 signaling.
نویسندگان
چکیده
RATIONALE Little is known about the contribution of bone marrow-derived progenitor cells (BMPCs) in the regulation endothelial barrier function as defined by microvascular permeability alterations at the level of adherens junctions (AJs). OBJECTIVE We investigated the role of BMPCs in annealing AJs and thereby in preventing lung edema formation induced by endotoxin (LPS). METHODS AND RESULTS We observed that BMPCs enhanced basal endothelial barrier function and prevented the increase in pulmonary microvascular permeability and edema formation in mice after LPS challenge. Coculture of BMPCs with endothelial cells induced Rac1 and Cdc42 activation and AJ assembly in endothelial cells. However, transplantation of BMPCs isolated from sphingosine kinase-1-null mice (SPHK1(-/-)), having impaired S1P production, failed to activate Rac1 and Cdc42 or protect the endothelial barrier. CONCLUSIONS These results demonstrate that BMPCs have the ability to reanneal endothelial AJs by paracrine S1P release in the inflammatory milieu and the consequent activation of Rac-1 and Cdc42 in endothelial cells.
منابع مشابه
The balance between Gαi-Cdc42/Rac and Gα12/13-RhoA pathways determines endothelial barrier regulation by sphingosine-1-phosphate
The bioactive sphingosine-1-phosphatephosphate (S1P) is present in plasma, bound to carrier proteins, and involved in many physiological processes, including angiogenesis, inflammatory responses, and vascular stabilization. S1P can bind to several G-protein-coupled receptors (GPCRs) activating a number of different signaling networks. At present, the dynamics and relative importance of signalin...
متن کاملBone marrow-derived progenitor cells prevent thrombin-induced increase in lung vascular permeability.
Since thrombin activation of endothelial cells (ECs) is well-known to increase endothelial permeability by disassembly of adherens junctions (AJs) and actinomyosin contractility mechanism involving myosin light chain (MLC) phosphorylation, we investigated the effects of bone marrow-derived progenitor cells (BMPCs) on the thrombin-induced endothelial permeability response. We observed that addit...
متن کاملInduction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN.
OBJECTIVES S1P acts via the S1PR family of G protein-coupled receptors to regulate a variety of physiological responses. Whereas S1P1R activates G(i)- and PI-3-kinase-dependent signals to inhibit vascular permeability, the related S1P2R inhibits the PI-3-kinase pathway by coupling to the Rho-dependent activation of the PTEN phosphatase. However, cellular consequences of S1P2R signaling in the v...
متن کاملRac and Rho play opposing roles in the regulation of hypoxia/reoxygenation-induced permeability changes in pulmonary artery endothelial cells.
Hypoxia/reoxygenation-induced changes in endothelial permeability are accompanied by endothelial actin cytoskeletal and adherens junction remodeling, but the mechanisms involved are uncertain. We therefore measured the activities of the Rho GTPases Rac1, RhoA, and Cdc42 during hypoxia/reoxygenation and correlated them with changes in endothelial permeability, remodeling of the actin cytoskeleto...
متن کاملPhotolysis of caged sphingosine-1-phosphate induces barrier enhancement and intracellular activation of lung endothelial cell signaling pathways.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that mediates cellular functions by ligation via G protein-coupled S1P receptors. In addition to its extracellular action, S1P also has intracellular effects; however, the signaling pathways modulated by intracellular S1P remain poorly defined. We have previously demonstrated a novel pathway of intracellular S1P generation in human lung ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 105 7 شماره
صفحات -
تاریخ انتشار 2009